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Exact distributions of eigenvalue curvatures for time-reversal-invariant chaotic systems
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The parametric motion of eigenvalues of chaotic quantum systems is studied by means of the
distribution of eigenvalue curvatures k (second derivative with respect to a perturbation parame-
ter). Using supersymmetric integral representations, this distribution is computed ezactly for the
orthogonal (3 = 1) and the symplectic (3 = 4) ensemble. It is found that P(k) o [1 + k2] (+A)/2
in agreement with a recent conjecture by Zakrzewski and Delande [Phys. Rev. E 47, 1650 (1993)].
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Both theoretically and experimentally, one frequently
studies the dependence of the energy levels on external
parameters such as magnetic and electric fields. For a
detailed description of the parameter dependences one
needs to solve explicitly the Schrédinger equation for the
system. However, at times this may not be feasible or
even desired. In fact, for quantum systems with chaotic
classical analogs one often focuses on the statistical prop-
erties of their energy spectra [1]. It has been known for
some time that these exhibit universal behavior in the
absence of external parameters, depending only on the
fundamental symmetries of the Hamiltonian, and that
they can be described by random-matrix theory [1-3].
There exist three universality classes: Systems without
time-reversal invariance fall into the unitary ensemble.
Time-reversal-invariant systems belong to the orthogo-
nal or symplectic ensemble depending on the absence or
the presence of strong spin-orbit scattering, respectively.

More recently, it has become clear that also the para-
metric dependence of eigenvalues of complex quantum
systems exhibits universal behavior [4-7]. Mainly two
types of quantities characterizing the parametric motion
of eigenvalues have been studied. First, one can consider
correlators of the density of states at different values of
the external parameter [6-10]. Such correlators arise, for
example, in studying parametric correlations of thermo-
dynamic properties of mesoscopic systems [11]. Second,
one can also study the statistics of the derivatives of the
eigenvalues E, ()\) with respect to a perturbation param-
eter A [5,12-18]. In this paper I consider the distribution
of the eigenvalues curvatures K,, which are defined as
the second derivative of the eigenvalues,

d’E, (A

The curvature distribution P(K') was introduced by Gas-
pard et al. [5], who showed that its asymptotic behav-
ior is universal for large curvatures, P(K) ~ K~ (2+8),
where 3 = 1,2, or 4 for the orthogonal, unitary, and
symplectic ensembles, respectively. A simple argument
for this result goes as follows [13]. Typically, the curva-
ture is large close to avoided level crossings where one
effectively has a two-level system. Anticipating Eq. (6)
below, one has K ~ 1/8S for two-level systems, where S
denotes the level spacing. Changing variables in the well-
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known spacing distribution P(S) ~ S? for small S, one
immediately recovers the asymptotic behavior of P(K)
mentioned above. Subsequently, this result was veri-
fied numerically for a wide variety of systems [12-14,19].
Moreover, Zakrzewski and Delande [14] found that for
the kicked top the full distribution could be fit quite well
to very simple functions

P(k) = Cpl1 + k%]~ +2/2, (2)

where Cjg is the normalization constant. The distribution
is expressed in terms of the dimensionless curvature

KA

$ = Br((@B. ) ©

where A denotes the average level spacing. Previously, I
proved that this is indeed the exact distribution for the
unitary ensemble [17]. It is the purpose of the present
paper to derive the eract curvature distributions for the
orthogonal and symplectic ensembles. Again, I find that
the conjecture (2) due to Zakrzewski and Delande [14] is
in fact the exact result.

The basic idea for the calculation is similar to that
for the unitary ensemble. The curvature distribution is
related to averages over determinants of random matri-
ces. However, while for the unitary ensemble this aver-
age could be represented in terms of an integral over a
coset of the ordinary group SU(4) [17], one encounters
integrals over cosets of supergroups involving both com-
muting and anticommuting variables in the calculations
for the orthogonal and symplectic ensembles. In contrast
to most supersymmetry calculations, these supergroups
have different numbers of bosonic and fermionic dimen-
sions.

The parametric dependence of energy levels can be in-
cluded in random-matrix theory by starting from a one-
parameter family of Hamiltonians

H()\) = (cos A\)Hy + (sin A)Ha, (4)

where both H; and H, are random N x N (2N x2N) ma-
trices drawn from the Gaussian orthogonal (symplectic)
ensemble with probability distribution

P(Hl,Hz)~exp{—%Ntr(H12+H22)}. (5)
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In the orthogonal ensemble the Hamiltonian is a real sym-
metric matrix, while in the symplectic ensemble it satis-
fies the time-reversal relation H* = (—ioy,)H (i0,), where
the Pauli matrix o, acts on the spin indices of the Hamil-
tonian. Note that each eigenvalue is doubly degenerate in
the symplectic ensemble due to the Kramers degeneracy.
With these definitions the curvature distribution is inde-
pendent of A and hence only A = 0 is considered in the
following. It can also be shown that quite generally it is
sufficient to average over the unperturbed Hamiltonian
H, [20]. However, the calculation is greatly simplified
when averaging over both H; and H.. Hence I take this
approach in the present paper.

Second-order perturbation theory yields an eract ex-
pression for the eigenvalue curvatures

_ |(H 2)nm|2
K,=-E.+2 Y BB (6)
m (#n)
Here the E,, denote the eigenvalues of H;. The curvature
distribution is defined as [17]

P(K) = ﬁ <Z 5(En)8(K — Kn)> .o

Hy,H>

To eliminate density-of-states effects only levels at the
center of the semicircle spectrum (2] (i.e., E, = 0) are
included. The distribution is normalized with the average
density of states p(0) at E = 0.

I start by performing the average over the perturbation
H,. Upon using the Fourier representation for the second
§ function in Eq. (7) this average becomes a Gaussian
integral, which yields

Pﬂ(K)~/:daeiKa
<6(E1)H( _lza/N)ﬁ/2>. ®)

Note that overall prefactors are consistently dropped
since they can be reconstructed from the normalization
condition at the very end of the calculation. Here the fact
was used that, statistically, the curvatures of all levels are
equivalent allowing one to consider only, say, K;. For the
unitary ensemble it is possible to perform the a integra-
tion at this stage [17]. This is not possible or helpful in
the orthogonal and symplectic ensembles where instead
one must compute directly the average on the right-hand
side of (8) using the well-known joint-eigenvalue distri-
bution [2]

N
1
Ps(E,) ~ [ 1E: — E;|P exp —§NZEJ? . (9)

i<j j=1

Treating the eigenvalue FE; separately, one sees that
the joint-eigenvalue distribution factorizes into the joint-
eigenvalue distribution for an (N — 1)-dimensional ran-
dom matrix H with eigenvalues FE,,...,Exn, a term
|det(E; — H)|?, and a function of E;. Hence one can

express the Fourier transform P(a) of the curvature
distribution in terms of an average over the (N — 1)-
dimensional random matrix H. For the orthogonal en-
semble one obtains

Pai(a) ~ | det H|v/det H = (10)
p=1 Vaet[H —2a/N(N -1)]/,

In the limit of large random matrices, the average
may be taken over an N-dimensional random-matrix
ensemble.  Hence I drop the superscript (N — 1)
on the average in the following. Writing |det H|

(det H)?/(+v/det H)*+/det H [21], one finds

(det H)?
(Vdet H)*\/det(H — i2a/N)

Paey(a) ~ (11)

Since Pg(a) = Pg(—a), I restrict myself to a < 0 in the
following. The determinants on the right-hand side of
Eq. (11) can be represented in terms of Gaussian inte-
grals over bosonic (commuting) and fermionic (anticom-
muting) variables. To this end introduce a supervec-
tor ¢T = [S1, 82, x1, (x*)*, x2, (x?)*] with real bosonic
entries S* and complex fermlomc entries x*, each entry
being itself an N-dimensional vector. One has

Psci(a) ~ /[d¢] exp{%¢TL1/2HL1/2¢+ %¢TP¢},
(12)

where the measure is [d¢] = H;V:l I, dSidx(dx3)*,
the matrix L = diag[l,—1,1,1,1,1], and the projector
P = diag[1,0,0,0,0,0]. The Hamiltonian H stands for
the direct product of the true N x N Hamiltonian and
the unit matrix in the superspace. Averaging over the
Hamiltonian and performing the Hubbard-Stratonovich
transformation in the usual manner [22], one finds an
integral representation

Paes(a) ~ / [do] exp{— (IV/8)trgo?
—(N/2)trgln (0 — 45aP/N)}, (13)

where trg denotes the graded trace. The supermatrix
o has two bosonic and four fermionic dimensions and
can be parametrized as ¢ = TAT' with A a diago-
nal matrix and T an element of the graded Lie group
UOSP(1,1]4). More explicitly, T is a pseudounitary
matrix satisfying TY1LT = L with additional structure
TTCT = C due to time-reversal invariance where C =
diagfo,, —ioy, —i0y]. In the limit of large random ma-
trices (N — oo) the o integration can be performed
by the saddle-point method. One may also expand the
exponent in (13) to first order in a/N. Deriving the
saddle-point equations, one finds that the relevant sad-
dle point is Ag = i+/2diag[1,1,1,1,—1,—1]. The signs
of the entries in the boson-boson block are fixed by con-
vergence requirements, while the choice of signs in the
fermion-fermion block corresponds to the largest saddle-
point manifold. Due to the presence of the projector P in
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the exponent, only the first row of T' appears in the inte-
grand and hence the integration can be restricted to the
coset manifold UOSP(1,1|4)/UOSP(1|4). The first row
of T can be parametrized as [z,y,n,7*,{,(*] with the
constraint z2 — y? + 2n*n + 2¢*¢ = 1 due to pseudouni-
tarity (z,y are real bosonic variables, 7,{ are complex
fermionic). It can be shown and it is intuitively plausible
that the invariant measure on this manifold is

du(T) = dz dydndn* d¢ d¢*
x8(1 — 2% +y? — 2n*n — 2¢*(). (14)

Now, the Fourier transform of the curvature distribution
becomes

Ppes(a) ~ / du(T) exp{v/2a(z® + % + 210 — 2¢C°0)}.
(15)

Performing this integral (for example, by employing the
Fourier representation of the § function in the measure)
and doing the Fourier transform, one finds for the curva-
ture distribution Pg—;(K) ~ [2 + K?]73/2. Computing
the dimensionless curvature k = K/1/2, one obtains the
final result

P(k) = %[1 + k232, (16)

which proves the Zakrzewski-Delande conjecture for the
orthogonal ensemble.

In the symplectic ensemble, one finds from Egs. (8)
and (9) that

(det H)®
Pg—4(a) ~ <dCt(I{——iC¥—/_A—6>H‘ o

To represent the determinants by bosonic and fermionic
Gaussian integrals, introduce a supervector
¢T = [ST, S.La SIa _S‘;a X1y X1 XIa _X;a
’fh’m,ﬂIa—7I¥7CT,C¢,CI,—GL (18)

where each entry is itself an N-dimensional vector.
Bosonic components are denoted by S, fermionic com-
ponents by x,n,{. For a < 0 one finds

Po-s(e) ~ [144 <exp { * 4! (H —iaP/N) ¢}>

H
(19)
Here, the projector P = diag[1,1,0,0,0,0,0,0]. This
leads to an integral representation
Poal@) ~ [ ldo] exp{~(N/2)trgo?
—Ntrgln(o — iaP/N)}. (20)

The supermatrix o has two bosonic and six fermionic di-
mensions and can be represented as ¢ = TAT' with A
a diagonal matrix and T a unitary matrix, 71T = 1.
In addition, T satisfies the relation TTCT = C, where
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C = diag[ioy, 1,1,1], due to time-reversal symmetry.
Hence T is an element of UOSP(6(2). One finds that the
relevant saddle point is Ag = idiag[1,1,1,1,1,1,—1, —1].
In the orthogonal ensemble I restricted the integration
over T to the coset manifold defined by the projector P.
In the present case, this leads to problems with boundary
terms and hence I choose to integrate over the saddle-
point manifold UOSP(6|2)/UOSP(2|0)®@UOSP(4/|2) de-
fined by Ao,

Paca(a) ~ / du(T) exp{ —iatrgTATt P}, (21)

where dp(T) is the invariant measure on the saddle-point
manifold. An element T of the saddle-point manifold can
be written in the block form

oo [Vi-#uf t (22)

- —tt Vi-tit ]|’

where ¢t is a 6 x 2 matrix. The first two rows of t have
fermionic entries while the remaining rows are bosonic.
From the time-reversal condition for T it follows that
t* = Dt with D = diag[ioy, 1,1]. In particular, this im-
plies that ¢t involves two independent complex fermionic
variables. Expressing the integral over the saddle-point
manifold in terms of ¢, one has

Ps_4(a) ~ exp{2a}
< [ du(T) exp{—2a(tts + (¢l (2)

Only the two fermionic elements of ¢ enter into the in-
tegrand. This observation can be used to prove the
Zakrzewski-Delande conjecture for the symplectic ensem-
ble without explicit evaluation of the integral. Equa-
tion (23) implies that Pg—4(a) = p2(a) exp{2a}, where
p2(a) is a polynomial of second order in a. Fourier trans-
forming and demanding that asymptotically Pg—4(K) ~
1/K?® (a result which was proven by Gaspard et al. [5]),
one finds that this determines Pz—4(K) uniquely,

P(k) = —[1 + k%73 (24)

8
37r[
Here I used k& = K /2. This completes the prove of the
Zakrzewski-Delande conjecture for all three ensembles.
It is worthwhile to note that the distribution (2) for the
unitary ensemble can also be obtained from the approach
taken in this paper. One finds from Egs. (8) and (9) that

(det H)3
Pg=z(a) ~ <m>H‘ =

The corresponding supersymmetric integral representa-
tion involves 0 = TAT' with T € U(1|3). The relevant
saddle point has the signature Ag ~ diag[1,1,1,—1]. In-
tegrating over the saddle-point manifold one recovers the
result (2) previously proven in Ref. [17].

In summary, I have computed the exact distributions
of eigenvalue curvatures for the orthogonal and symplec-
tic ensembles of random-matrix theory. The results are
in agreement with a recent conjecture by Zakrzewski and
Delande [14] based on a careful study of numerical re-
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sults. It is quite remarkable that the exact curvature
distribution has such a simple functional form. This
is in marked contrast to other distribution functions in
random-matrix theory such as the level-spacing distribu-
tion [2]. It would be interesting to uncover the deeper
reason for this simplicity. A possible line of thought may
start from the observation that the expression for the
eigenvalue curvature (6) involves a sum over a large num-
ber of (statistically dependent) terms [23]. This suggests
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that the simplicity of the curvature distribution may be
due to some generalized central-limit theorem.
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